

FLoRIN

FLoRIN, the Flexible Learning-free Reconstruction of Neural Volumes pipeline,
is a pipeline for large-scale parallel and distributed computer vision.
Offering easy setup and access to hierarchical parallelism, FLorIN is ideal for
scaling computer vision to HPC systems.

Originally, this project was our response to the question of how to segment and
reconstruct neural microscopy (e.g., micro-CT tomography, low-resolution
electron microscopy, fluorescence microscopy etc.) without large amounts of
training data available to train a neural network. We tackled this problem by
revisiting classical computer vision methods, eventually developing the
N-Dimensional Neighborhood Thresholding (NDNT) algorithm as a modern update to
integral image-based thresholding. FLoRIN has since been shown to be a fast,
robust segmentation and reconstruction engine across different imaging
modalities and datasets.

This package implements the NDNT algorithm, as well as a straightforward API
for mixed serial, parallel, and distributed computer vision. These docs provide
examples of how to use FLoRIN with various mixtures of serial and parallel
processing and how to customize the FLoRIN pipeline with new functions and
features.

Installation

pip

pip install florin

anaconda

conda install -c jeffkinnison florin

Publications

	Shahbazi, Ali, Jeffery Kinnison, Rafael Vescovi, Ming Du, Robert Hill,
Maximilian Jösch, Marc Takeno et al. “Flexible Learning-Free Segmentation
and Reconstruction of Neural Volumes.” Scientific reports 8,
no. 1 (2018): 14247.

Installation

FLoRIN can be installed with all of its Python dependencies through the Python
Package Index or Anaconda.

PyPI

pip install florin

Anaconda

conda install -c jeffkinnison florin

Python Dependencies

	Python 3.4+

	numpy

	scipy

	scikit-image

	pathos

	mpi4py

	h5py

Examples using FLoRIN

	A First Example
	Segmenting

	Weak Classification

	Closing Remarks

	Parallel Processing Pipelines
	Parallelism

	Mixed Parallelism

	Closing Remarks

	Using Custom Functions in FLoRIN
	Single-Argument Functions

	Parameterizing Functions with florinate

	Why florinate?

	Adding New Pipeline Types to FLoRIN
	SLURMPipeline

	Other Examples

A First Example

This example will walk through basic FLoRIN usage segmenting and reconstructing
a small X-Ray volume.

Segmenting

The following code sets up a serial pipeline to segment the image:

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening(),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff')
)

Run the pipeline
segmented = pipeline()

At the end of the pipeline, a TIFF stack with the binary segmentation will be
output.

Weak Classification

After we have the binary mask, we want to determine what type of structure each
object is. The previous pipeline can be extended to perform weak classification
by user-defined bounds on the segmented objects:

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening(),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff'),

 # Find connected components
 conncomp.label(),
 morphology.remove_small_holes(min_size=20),
 conncomp.regionprops(),

 # Classify the connected components by their volume and dimensions
 florin.classify(
 florin.bounds_classifier(
 'cell',
 area=(100, 300),
 depth=(10, 25),
 width=(50, 100),
 height=(50, 100)
),
 florin.bounds_classifier('vasculature')
),

 # Reconstruct the labeled volume
 florin.reconstruct(),

 # Write out the labeled volume
 florin.save('labeled.tiff')
)

Run the pipeline
segmented = pipeline()

This pipeline save both the binary segmentation and the labeled volume where
each class is represented by a different color.

Closing Remarks

Rolling out a basic FLoRIN pipeline is relatively easy (20 lines of code
without the comments and whitespace). This example runs everything on a single
cores, but the next example demonstrates parallel processing, which is just as
easy to set up.

Parallel Processing Pipelines

This example will show how to convert the previous example to perform
multiprocessing on the tiles and connected components created during
segmentation and weak classification, respectively.

Parallelism

Parallel processing can be invoked by creating sub-pipelines around commands
that will receive multiple inputs.

Multithreading

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 florin.Multithread(
 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening()
),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff'),

 # Find connected components
 conncomp.label(),
 morphology.remove_small_holes(min_size=20),
 conncomp.regionprops(),

 # Classify the connected components by their volume and dimensions
 florin.Multithread(
 florin.classify(
 florin.bounds_classifier(
 'cell',
 area=(100, 300),
 depth=(10, 25),
 width=(50, 100),
 height=(50, 100)
),
 florin.bounds_classifier('vasculature')
)
)

 # Reconstruct the labeled volume
 florin.reconstruct(),

 # Write out the labeled volume
 florin.save('labeled.tiff')
)

Run the pipeline
segmented = pipeline()

Multiprocessing

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 florin.Multiprocess(
 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening()
),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff'),

 # Find connected components
 conncomp.label(),
 morphology.remove_small_holes(min_size=20),
 conncomp.regionprops(),

 # Classify the connected components by their volume and dimensions
 florin.Multiprocess(
 florin.classify(
 florin.bounds_classifier(
 'cell',
 area=(100, 300),
 depth=(10, 25),
 width=(50, 100),
 height=(50, 100)
),
 florin.bounds_classifier('vasculature')
)
)

 # Reconstruct the labeled volume
 florin.reconstruct(),

 # Write out the labeled volume
 florin.save('labeled.tiff')
)

Run the pipeline
segmented = pipeline()

MPI

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 florin.MPI(
 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening()
),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff'),

 # Find connected components
 conncomp.label(),
 morphology.remove_small_holes(min_size=20),
 conncomp.regionprops(),

 # Classify the connected components by their volume and dimensions
 florin.MPI(
 florin.classify(
 florin.bounds_classifier(
 'cell',
 area=(100, 300),
 depth=(10, 25),
 width=(50, 100),
 height=(50, 100)
),
 florin.bounds_classifier('vasculature')
)
)

 # Reconstruct the labeled volume
 florin.reconstruct(),

 # Write out the labeled volume
 florin.save('labeled.tiff')
)

Run the pipeline
segmented = pipeline()

All of these examples scale to the number of availble cores (or MPI ranks in
the MPI version), and can be parameterized to use a specific number when the
sub-pipelines are created.

Mixed Parallelism

Using the sub-pipeline model in the above example, it is possible to mix
parallel processing paradigms. For example, segmenting tiles with NDNT uses
vectorized operations and may be better suited to multi-node parallelism with
MPI, but classification is more lightweight and can be carried out in threads.
This sort of a pipeline would look like:

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 florin.MPI(
 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), thresshold=0.3),

 # Clean up a little bit
 morphology.binary_opening()
),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff'),

 # Find connected components
 conncomp.label(),
 morphology.remove_small_holes(min_size=20),
 conncomp.regionprops(),

 # Classify the connected components by their volume and dimensions
 florin.Multithread(
 florin.classify(
 florin.bounds_classifier(
 'cell',
 area=(100, 300),
 depth=(10, 25),
 width=(50, 100),
 height=(50, 100)
),
 florin.bounds_classifier('vasculature')
)
)

 # Reconstruct the labeled volume
 florin.reconstruct(),

 # Write out the labeled volume
 florin.save('labeled.tiff')
)

Run the pipeline
segmented = pipeline()

In this case, an implicit join after the MPI pipeline converts merges the
segmented tiles into a single volume. Connected components are then computed
over the whole volume and classified concurrently using a multithreading model.

Closing Remarks

Parallel processing with FLoRIN is as easy as specifying the type of parallel
pipeline to use, and they are roughly interchangeable (MPI requires using the
standard mpirun or mpiexec invocations, or an equivalent).

Using Custom Functions in FLoRIN

Because of the wide array of computer vision methods, FLoRIN comes with
utilities to prepare functions. This section will go over the two cases for
preparing functions: without parameters, and with parameters.

Single-Argument Functions

Functions with a single argument (e.g., those taking a single image or a single
numpy array and no other arguments) require no additional preparation. This
example shows how to incorporate np.squeeze into a pipeline:

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

import numpy as np

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 # Remove any axes with shape 1. Simply pass np.squeeze without invoking
 np.squeeze,

 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), threshold=0.3),

 # Clean up a little bit
 morphology.binary_opening(),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff')
)

Run the pipeline
segmented = pipeline()

Note that np.squeeze is not invoked. The function is just passed to the
pipeline as-is, and FLoRIN will call it later.

Parameterizing Functions with florinate

Functions with parameters can also be used within FLoRIN by wrapping them with
florin.florinate. This function records any parameters passed while setting
up the pipeline and then automatically applies them when the data comes through
(i.e. partial function application):

.. content-tabs::

Decorator

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Create the custom function and decorate it with ``florinate``
@florin.florinate
def scale(image, scalar=1):
 """Scale an images values by some number.

 Parameters

 image : array_like
 scale : int or float

 Returns

 image * scale
 """
 return image * scale

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 # Add the custom function to the pipeline
 scale(scalar=2.0),

 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), threshold=0.3),

 # Clean up a little bit
 morphology.binary_opening(),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff')
)

Run the pipeline
segmented = pipeline()

In-Line

import florin
import florin.conncomp as conncomp
import florin.morphology as morphology
import florin.thresholding as thresholding

Create the custom function
def scale(image, scalar=1):
 """Scale an images values by some number.

 Parameters

 image : array_like
 scale : int or float

 Returns

 image * scale
 """
 return image * scale

Set up a serial pipeline
pipeline = florin.Serial(
 # Load in the volume from file
 florin.load(),

 # Add the custom function to the pipeline and wrap it in ``florinate``
 florin.florinate(scale)(scalar=2.0),

 # Tile the volume into overlapping 64 x 64 x 10 subvolumes
 florin.tile(shape=(10, 64, 64), stride=(10, 32, 32)),

 # Add the custom function to the pipeline
 scale(scalar=2.0),

 # Threshold with NDNT
 thresholding.ndnt(shape=(10, 64, 64), threshold=0.3),

 # Clean up a little bit
 morphology.binary_opening(),

 # Save the output to a TIFF stack
 florin.save('segmented.tiff')
)

Run the pipeline
segmented = pipeline()

florinate will handle any number of arguments and keyword arguments passed
to it, applying them every time the function is called during the pipeline.

Why florinate?

The functools module already has an implementation of partial functions
(functools.partial), the the natural question is: why reinvent the wheel?
When building FLoRIN, we noticed that most computer vision functions take the
image as the first argument; functools.partial, however will only
append arguments when called. florinate solves this by prepending the
argument(s) when called, lining up with the norm for computer vision APIs.

If a custom function takes the image as the last argument,
functools.partial can be used in place of florinate with no changes.

Adding New Pipeline Types to FLoRIN

FLoRIN offers a number of pipeline options (Serial, Multithread, Multiprocess,
etc.) out of the box, but what if you need a different model? This example will
show how to create a custom pipeline class with a different style of execution.

SLURMPipeline

Suppose you work on a cluster that uses SLURM and want to submit a job to a
queue. This requires a pipeline that

	Accepts parameters to configure sbatch

	Sets up a job script

	Submits the job script for processing

	Blocks until all jobs are finished

Such a pipeline may look like this

import re
import subprocess
import time

import dill # dill is installed with florin

from florin.pipelines import Pipeline

class SLURMPipeline(Pipeline):
 """Pipeline that sets up and runs a SLURM job.

 Parameters

 operations : callables
 The functions of the pipeline.

 Other Parameters

 Keyword arguments corresponding to SLURM directives, e.g. qos='debug',
 time=60, etc. These are dynamically added to the jobscript before
 submission.
 """

 def __init__(self, *operations, **kwargs):
 super(SLURMPipeline, self).__init__(*operations)
 self.slurm_directives = kwargs

 def run(self, data):
 """Submit and run a pipeline on SLURM.

 Parameters

 data : list
 The input to the first function in the pipeline, e.g. a
 filepath for florin.load().
 """
 # Serialize this current pipeline
 pipeline_path = 'my_pipeline.pkl'
 self.dump(pipeline_path)

 # Set up the job script. This sets up the shebang header, then
 # iterates over the provided #SBATCH disrectives and sets each one
 # up on its own line, then finally invokes srun to deserialize the
 # pipeline and run it on the data.
 jobscript = "#/usr/bin/env bash"
 jobscript = '\n'.join(
 ['#!/usr/bin/env bash'] +
 ['#SBATCH --{}={}'.format(key, val) for key, val in self.slurm_directives.items()] +
 ['srun python -m florin.run {} $1'.format(pipeline_path)])

 # Dump the jobscript to file
 with open('my_jobscript.job', 'w') as f:
 f.write(jobscript)

 jobids = []

 # Submit one job for each data item.
 for item in data:
 out = subprocess.check_output(['sbatch', my_jobscript, item])
 jobids.append(re.search(r'([\d]+)', out).group())

 # Wait until all jobs have completed to exit.
 while len(jobids) > 0:
 time.sleep(10)
 completed = []

 for jid in jobids:
 out = subprocess.check_output(['sacct', '-j', jid])
 if re.search(r'(COMPLETE)', out):
 completed.add(jid)

 for jid in completed:
 jobids.remove(jid)

Note that this code is untested and by no means guaranteed to work, it is only
meant to be a non-trivial example of what a custom pipeline may look like.

Other Examples

Another great source of examples for setting up custom pipelines is the
florin.pipelines module, where the source code for the officially
supported pipelines.

API Documentation

	florin

	The FLoRIN pipeline for large-scale learning-free computer vision.

	florin.classification

	Utilities for classifying connected components.

	florin.closure

	Closure decorator for delayed processing.

	florin.compose

	Deferred function composition with functools.

	florin.conncomp

	Convenience functions for image connected components operations.

	florin.io

	I/O functions for loading and saving data in a variety of formats.

	florin.morphology

	Convenience functions for image morphological operations.

	florin.ndnt

	N-Dimensional Neighborhood Thresholding for any-dimensional data.

	florin.pipelines

	Deferred execution pipelines with different computational models.

	florin.reconstruction

	Reconstruct connected components as an array of pixel-wise class labels.

	florin.thresholding

	Convenience functions for image thresholding operations.

	florin.tiling

	Utilities for tiling images and volumes.

florin

The FLoRIN pipeline for large-scale learning-free computer vision.

Classes

	Balsam

	Distributed computation using the Balsam job submission database.

	MPI

	Multicore/multi-node parallel computation with MPI.

	Multiprocessing

	Multiprocessing using the standard fork/join model.

	Multithreading

	Multithreading using the Python multithreading library.

	Serial

	Single-core serial deferred computation.

	WorkQueue

	Distributed computing using Work Queue to manage tasks.

Functions

	bounds_classifier

	Classify connected components based on boundary conditions.

	classify

	Classify connected components into multiple classes.

	florinate

	Prepare a function for use in the FLoRIN pipeline.

	join

	Join one or more tiles into a single array.

	load

	Load image data into FLoRIN.

	reconstruct

	Create a label array from connected component classification labels.

	save

	Save image data from FLoRIN.

	tile

	Split a single array into sub-arrays.

florin.classification

Utilities for classifying connected components.

Classes

	FlorinClassifier

	Classification unit for weak object grouping.

Functions

	classify

	Classify a segmented object.

Functions

	classify(obj, *classes)

	Multiclass classificaiton based on human-tuned boundaries.

Classes

	FlorinClassifier(label, **kwargs)

	Classify connected components based on boundary conditions.

	
class florin.classification.FlorinClassifier(label, **kwargs)

	Classify connected components based on boundary conditions.

	Parameters

	
	label – The class label identifying this class. Can be any arbitrary label.

	boundaries – Pairs of values (2-tuples) passed as keyword arguments defining the
boundaries to classify along. For example, passing area=(5, 10)
tells this class that the objects it contains have an area/volume of
5 <= obj.area <= 10.

Methods

	classify(self, obj)

	Determine if an object is in this class.

	
classify(self, obj)

	Determine if an object is in this class.

	Parameters

	obj (skimage.measure._regionprops.RegionProperties) – The object to classify.

	Returns

	True if the object is within all defined boundaries else False. If
no boundaries were provided, return True (e.g., the default class).

	Return type

	bool

	
florin.classification.classify(obj, *classes)

	Multiclass classificaiton based on human-tuned boundaries.

	Parameters

	
	obj (skimage.measure._regionprops.RegionProperties) – The object to classify.

	classes (florin.classify.FlorinClassifiers) – The classes to select from.

	Returns

	Updates obj with a class label (obj.class_label) and passes it
on for further processing.

	Return type

	obj

Notes

In a typical FLoRIN pipeline, florin.reconstruct() will be called
immediately after florin.classify().

florin.closure

Closure decorator for delayed processing.

Functions

	florinate

	Decorator to wrap arbitrary functions and enable delayed evaluation.

Functions

	florinate(func)

	Decorator to wrap arbitrary functions and enable delayed evaluation.

	
florin.closure.florinate(func)

	Decorator to wrap arbitrary functions and enable delayed evaluation.

	Parameters

	func (callable) – The function/Python callable to wrap.

	Returns

	wrapper – The wrapped func which stores any arguments passed to func and
may be called on new data at a future time.

	Return type

	callable

Notes

florinate is essentially a rebranding of functools.partial to allow
passing the deferred arguments at the front of the call instead of the
tail. This conforms with the signatures of many computer vision API
functions, which tend to accept image data as the first argument.

Examples

florinate may be appplied as a decorator to standard function
definitions to then make subsequent calls return the deferred function.

>>> @florinate
... def add(x, y):
... return x + y
>>> plus_one = add(1)
>>> plus_one(5)
6

Functions may also be florinated on the fly by using it as a standard
function:

>>> def concat(str1, str2):
... return ' '.join([str1, str2])
>>> worlder = florinate(concat)('World')
>>> worlder('Hello')
'Hello World'

florin.compose

Deferred function composition with functools.

Functions

	compose

	Compose a chain of functions on an initial input.

Functions

	compose(*functions)

	Compose a chain of functions on an initial input.

	
florin.compose.compose(*functions)

	Compose a chain of functions on an initial input.

Applies a sequence of functions in order to some initial data, performing a
reduce over the entire function chain.

	Parameters

	functions (list of callable) – The functions to execute. List contents may be any callable, including
functools.partial objects to enable parameterizing deferred functions.

	Returns

	

	Return type

	A partial function to be applied to data at a later time.

florin.conncomp

Convenience functions for image connected components operations.

Functions

	label

	Integer labeling for binary connected components.

	regionprops

	Compute various properties of labeled connected components.

Functions

	label(image, *args, **kwargs)

	Wrapper that casts arrays to integers before labeling

	regionprops(image, **kwargs)

	Compute the properties of connected components.

	
florin.conncomp.label(image, *args, **kwargs)

	Wrapper that casts arrays to integers before labeling

	
florin.conncomp.regionprops(image, **kwargs)

	Compute the properties of connected components.

	Parameters

	
	image (array_like) – The labeled image to process for connected components.

	intensity_image (array_like) – The original image from which image was computed. Passing this
enables computing summary statistics about the image pixel intensities.

Notes

This function wraps skimage.measure.regionprops to allow for additional
bookkeeping and feature computation.

florin.io

I/O functions for loading and saving data in a variety of formats.

Functions

	load

	Load image(s) from a file.

	load_hdf5

	Load data from an HDF5 file.

	load_image

	Load an image file.

	load_images

	Load a directory of image files.

	load_npy

	Load data from a numpy array file.

	load_tiff

	Load a TIFF stack.

	save

	Save image(s) in a variety of formats.

	save_hdf5

	Save an image to HDF5 format.

	save_image

	Save an image.

	save_images

	Save a sequence of images.

	save_npy

	Save an image to a numpy array file.

	save_tiff

	Save an image to TIFF format.

Functions

	load(path, **kwargs)

	Load images from a file.

	load_hdf5(path[, key])

	Load data from an HDF5 file.

	load_image(path)

	Load an image file.

	load_images(path[, ext])

	Load a directory of image files.

	load_npy(path)

	Load data from a numpy array file.

	load_tiff(path)

	Load a TIFF stack.

	save(img, path, **kwargs)

	Save image(s) in a variety of formats.

	save_hdf5(img, path[, key])

	Save an image to HDF5 format.

	save_image(img, path)

	Save an image.

	save_images(img, path[, ext])

	Save a sequence of images.

	save_npy(img, path)

	Save an image to a numpy array file.

	save_tiff(img, path)

	Save an image to TIFF format.

	
florin.io.load(path, **kwargs)

	Load images from a file.

Generic loader function that uses the file extension to determine how to
load the data.

	Parameters

	path (str) – Path to the image file(s) to load.

	Other Parameters

	key – Key to load data from when working with key/value stores (e.g. HDF5,
npz, etc.)

	Returns

	data

	Return type

	numpy.ndarray

	
florin.io.load_hdf5(path, key='stack')

	Load data from an HDF5 file.

	Parameters

	
	path (str) – Path to the HDF5 file to load.

	key – Key to load data from.

	Returns

	data

	Return type

	h5py.Dataset

	
florin.io.load_image(path)

	Load an image file.

	Parameters

	path (str) – Path to the image file to load.

	Returns

	data

	Return type

	numpy.ndarray

	
florin.io.load_images(path, ext='png')

	Load a directory of image files.

	Parameters

	
	path (str) – Path to the image file(s) to load.

	ext (str) – The file extension to match. Only files with this extension will be
loaded. Default: ‘png’

	Returns

	data

	Return type

	numpy.ndarray

	
florin.io.load_npy(path)

	Load data from a numpy array file.

	Parameters

	path (str) – Path to the array file to load.

	Returns

	data

	Return type

	numpy.ndarray

	
florin.io.load_tiff(path)

	Load a TIFF stack.

	Parameters

	path (str) – Path to the TIFF stack to load.

	Returns

	data

	Return type

	numpy.ndarray

	
florin.io.save(img, path, **kwargs)

	Save image(s) in a variety of formats.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to. This path determines which format the
data will be saved as.

	Returns

	The unaltered image/volume.

	Return type

	img

	Other Parameters

	
	See ``save_hdf5``, ``save_image``, ``save_images``, ``save_npy``, and

	``save_tiff`` for filetype-specific arguments.

Notes

The filetype passed as path will determine the format of the saved
file. If no extension is found, 3D arrays will automatically be saved as
numbered PNG files in a directory created at path and 2D arrays will be
saved to path directly as a PNG.

	
florin.io.save_hdf5(img, path, key='stack')

	Save an image to HDF5 format.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to.

	
florin.io.save_image(img, path)

	Save an image.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to.

	
florin.io.save_images(img, path, ext='png')

	Save a sequence of images.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to.

	ext (str) – The file extension to save each image with.

	
florin.io.save_npy(img, path)

	Save an image to a numpy array file.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to.

	
florin.io.save_tiff(img, path)

	Save an image to TIFF format.

	Parameters

	
	img (array_like) – The image/volume to save.

	path (str) – The filepath to save the data to.

florin.morphology

Convenience functions for image morphological operations.

Functions

	closing

	Perform a grayscale morphological closing on an image.

	dilation

	Perform a grayscale morphological dilation on an image.

	erosion

	Perform a grayscale morphological erosion on an image.

	opening

	Perform a grayscale morphological opening on an image.

	binary_closing

	Perform a binary morphological closing on an image.

	binary_dilation

	Perform a binary morphological dilation on an image.

	binary_erosion

	Perform a binary morphological erosion on an image.

	binary_opening

	Perform a binary morphological opening on an image.

	remove_small_holes

	Fill in contiguous holes smaller than the specified size.

	remove_small_objects

	Remove contiguous objects smaller than the specified size.

florin.ndnt

N-Dimensional Neighborhood Thresholding for any-dimensional data.

Functions

	ndnt

	Binarize data with N-Dimensional Neighborhood Thresholding.

	integral_image

	Compute the integral image of a n image or volume.

	integral_image_sum

	Compute the neighborhood sum of an integral image.

Classes

InvalidThresholdError

Functions

	integral_image(img[, inplace])

	Compute the integral image of an image or image volume.

	integral_image_sum(int_img[, shape, …])

	Compute pixel neighborhood statistics.

	ndnt(img[, shape, threshold, inplace])

	Compute an n-dimensional Bradley thresholding of an image or volume.

Exceptions

	InvalidThresholdError(t)

	Raised when the NDNT threshold value is out of domain.

	
exception florin.ndnt.InvalidThresholdError(t)

	Raised when the NDNT threshold value is out of domain.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
florin.ndnt.integral_image(img, inplace=False)

	Compute the integral image of an image or image volume.

	Parameters

	
	img (array-like) – The original 2D image or 3D volume.

	inplace (bool, optional) – If True, compute the integral image in the same array as the original
image.

	Returns

	int_img – The integral image of the original image or volume.

	Return type

	array-like

Notes

This function extends the integral image to n dimensions as described in
[1].

References

	1

	Tapia, E., 2011. A note on the computation of high-dimensional
integral images. Pattern Recognition Letters, 32(2), pp.197-201.

	
florin.ndnt.integral_image_sum(int_img, shape=None, return_counts=True)

	Compute pixel neighborhood statistics.

	Parameters

	
	int_image (array_like) – The integral image.

	shape (tuple of int) – The shape of the neighborhood around each pixel.

	return_counts (bool) – If True, in addition to neighborhood pixel sums, return the number of
pixels used to compute each sum.

	Returns

	
	sums (array_like) – An array where each entry is the sum of pixel values in a neighborhood.
The same shape as int_img.

	counts (array_like) – An array where each entry is the number of pixels used to compute each
entry in sums. The same shape as int_img.

	
florin.ndnt.ndnt(img, shape=None, threshold=0.25, inplace=False)

	Compute an n-dimensional Bradley thresholding of an image or volume.

The Bradley thresholding, also called Local Adaptive Thresholding, uses the
integral image of an image or volume to threshold an image based on local
mean greyscale intensities. The underlying assumption is that while the
mean intensity may shift, the distribution of intensities will remain
roughly constant across an entire image or volume.

	Parameters

	
	img (array-like) – The image to threshold.

	shape (array-like, optional) – The dimensions of the local neighborhood around each pixel/voxel.

	threshold (float) – The threshold value as the percentage of greyscale value to keep. Must
be in [0, 1].

Notes

The original Bradley thresholding was introduced in [1] as a means for
quickly thresholding images or video. Shahbazi et al. [2] extended this
method to operate on data of arbitrary dimensionality using the method
described by Tapia [3].

References

	1

	Bradley, D. and Roth, G., 2007. Adaptive thresholding using the
integral image. Journal of Graphics Tools, 12(2), pp.13-21.

	2

	Shahbazi, E., Kinnison, J., et al.

	3

	Tapia, E., 2011. A note on the computation of high-dimensional
integral images. Pattern Recognition Letters, 32(2), pp.197-201.

florin.pipelines

Deferred execution pipelines with different computational models.

Classes

	BalsamPipeline

	Distributed computation using the Balsam job submission database.

	MPIPipeline

	Multicore/multi-node parallel computation with MPI.

	MultiprocessingPipeline

	Multiprocessing using the standard fork/join model.

	MultithreadingPipeline

	Multithreading using the Python multithreading library.

	SerialPipeline

	Single-core serial deferred computation.

	WorkQueuePipeline

	Distributed computing using Work Queue to manage tasks.

	
class florin.pipelines.BalsamPipeline(*operations)

	Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

	
class florin.pipelines.MPIPipeline(*operations)

	MPI-based multiprocessing pipeline.

	Parameters

	operations (callables) – Sequence of operations to run in the pipeline.

Notes

MPI is configured by wrapping Python in an mpiexec or mpirun call
at runtime.

Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

	
class florin.pipelines.MultiprocessingPipeline(*operations, processes=None)

	Pipeline for multi-core parallel processing on a single machine.

	Parameters

	
	operations (callables) – The operations/functions/callable classes to run in this pipeline.

	processes (int, optional) – The number of processes to use. Setting None will attempt to use as
many as can be supported.

Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

	
class florin.pipelines.MultithreadingPipeline(*operations, threads=None)

	Pipeline for multithreaded parallel processing on a single machine.

	Parameters

	
	operations (callables) – Sequence of operations to run in the pipeline.

	threads (int, optional) – The number of threads to use. Setting None will attempt to use as
many as can be supported.

Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

	
class florin.pipelines.SerialPipeline(*operations)

	Pipeline for single-core serial computation.

	Parameters

	operations (callables) – The operations/functions/callable classes to run in this pipeline.

Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

	
class florin.pipelines.WorkQueuePipeline(*operations)

	Methods

	__call__(self, data)

	Call self as a function.

	add(self, func)

	Append a callable to this pipeline.

	dump(self, path)

	Save this pipeline to file.

	dumps(self)

	Serialize this pipeline as a string.

	run(self, data)

	Run data through the pipeline.

	
add(self, func)

	Append a callable to this pipeline.

	Parameters

	func (callable) – New function to add.

	
dump(self, path)

	Save this pipeline to file.

	Parameters

	path (str) – Path to the file to write this pipeline to.

	
dumps(self)

	Serialize this pipeline as a string.

	
run(self, data)

	Run data through the pipeline.

	Parameters

	data – Input to the first function in the pipeline.

	Returns

	The result of applying the pipeline to data.

	Return type

	result

florin.reconstruction

Reconstruct connected components as an array of pixel-wise class labels.

Functions

	reconstruct

	Create a labeled image or volume from classified connected components.

Functions

	reconstruct(objs)

	Create a labeled image or volume from classified connected components.

	
florin.reconstruction.reconstruct(objs)

	Create a labeled image or volume from classified connected components.

	Parameters

	objs (list of obj : skimage.measure._regionprops.RegionProperties) – Classified objects to be labeled.

florin.thresholding

Convenience functions for image thresholding operations.

Functions

	ndnt

	Binarize data with N-Dimensional Neighborhood Thresholding.

florin.tiling

Utilities for tiling images and volumes.

Functions

	tile_generator

	Subdivide an array into equally-sized tiles.

	join_tiles

	Join a sequence of tiles into a single array.

Functions

	join(tiles)

	Join a set of tiles into a single array.

	join_tiles(tiles)

	Join a set of tiles into a single array.

	tile(img[, shape, stride, offset, tile_store])

	Tile data into n-dimensional subdivisions.

	tile_generator(img[, shape, stride, offset, …])

	Tile data into n-dimensional subdivisions.

Exceptions

	DimensionMismatchError

	

	InvalidTileShapeError

	

	InvalidTileStepError

	

	ShapeStepMismatchError

	

	
exception florin.tiling.DimensionMismatchError

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception florin.tiling.InvalidTileShapeError

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception florin.tiling.InvalidTileStepError

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception florin.tiling.ShapeStepMismatchError

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
florin.tiling.join(tiles)

	Join a set of tiles into a single array.

	Parameters

	
	tiles (collection of FlorinArray) – The collection of tiles to join.

	shape (tuple of int) – The shape of the joined array.

	Returns

	joined – The array created by joining the tiles and inserting them into the
correct positions.

	Return type

	array_like

	
florin.tiling.join_tiles(tiles)

	Join a set of tiles into a single array.

	Parameters

	
	tiles (collection of FlorinArray) – The collection of tiles to join.

	shape (tuple of int) – The shape of the joined array.

	Returns

	joined – The array created by joining the tiles and inserting them into the
correct positions.

	Return type

	array_like

	
florin.tiling.tile(img, shape=None, stride=None, offset=None, tile_store=None)

	Tile data into n-dimensional subdivisions.

	Parameters

	
	img (array_like) – The data to subdivide.

	shape (tuple of int) – The shape of the subdivisions.

	stride (tuple of int) – The stride between subdivisions.

	Yields

	
	tile (florin.FlorinVolume) – A subdivision of img. Subdivisions are yielded in sequence from the
start of img.

	metadata (dictionary) – Key/value store of metadata, e.g. for joining tiles.

Notes

Everything up to the for loop will be run exactly once when the first tile
is requested.

	
florin.tiling.tile_generator(img, shape=None, stride=None, offset=None, tile_store=None)

	Tile data into n-dimensional subdivisions.

	Parameters

	
	img (array_like) – The data to subdivide.

	shape (tuple of int) – The shape of the subdivisions.

	stride (tuple of int) – The stride between subdivisions.

	Yields

	
	tile (florin.FlorinVolume) – A subdivision of img. Subdivisions are yielded in sequence from the
start of img.

	metadata (dictionary) – Key/value store of metadata, e.g. for joining tiles.

Notes

Everything up to the for loop will be run exactly once when the first tile
is requested.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 florin	

 	
 	
 florin.classification	

 	
 	
 florin.closure	

 	
 	
 florin.compose	

 	
 	
 florin.conncomp	

 	
 	
 florin.io	

 	
 	
 florin.morphology	

 	
 	
 florin.ndnt	

 	
 	
 florin.pipelines	

 	
 	
 florin.reconstruction	

 	
 	
 florin.thresholding	

 	
 	
 florin.tiling	

Index

 A
 | B
 | C
 | D
 | F
 | I
 | J
 | L
 | M
 | N
 | R
 | S
 | T
 | W

A

 	
 	add() (florin.pipelines.BalsamPipeline method)

 	(florin.pipelines.MPIPipeline method)

 	(florin.pipelines.MultiprocessingPipeline method)

 	(florin.pipelines.MultithreadingPipeline method)

 	(florin.pipelines.SerialPipeline method)

 	(florin.pipelines.WorkQueuePipeline method)

B

 	
 	BalsamPipeline (class in florin.pipelines)

C

 	
 	classify() (florin.classification.FlorinClassifier method)

 	(in module florin.classification)

 	
 	compose() (in module florin.compose)

D

 	
 	DimensionMismatchError

 	dump() (florin.pipelines.BalsamPipeline method)

 	(florin.pipelines.MPIPipeline method)

 	(florin.pipelines.MultiprocessingPipeline method)

 	(florin.pipelines.MultithreadingPipeline method)

 	(florin.pipelines.SerialPipeline method)

 	(florin.pipelines.WorkQueuePipeline method)

 	
 	dumps() (florin.pipelines.BalsamPipeline method)

 	(florin.pipelines.MPIPipeline method)

 	(florin.pipelines.MultiprocessingPipeline method)

 	(florin.pipelines.MultithreadingPipeline method)

 	(florin.pipelines.SerialPipeline method)

 	(florin.pipelines.WorkQueuePipeline method)

F

 	
 	florin (module)

 	florin.classification (module)

 	florin.closure (module)

 	florin.compose (module)

 	florin.conncomp (module)

 	florin.io (module)

 	florin.morphology (module)

 	
 	florin.ndnt (module)

 	florin.pipelines (module)

 	florin.reconstruction (module)

 	florin.thresholding (module)

 	florin.tiling (module)

 	florinate() (in module florin.closure)

 	FlorinClassifier (class in florin.classification)

I

 	
 	integral_image() (in module florin.ndnt)

 	integral_image_sum() (in module florin.ndnt)

 	
 	InvalidThresholdError

 	InvalidTileShapeError

 	InvalidTileStepError

J

 	
 	join() (in module florin.tiling)

 	
 	join_tiles() (in module florin.tiling)

L

 	
 	label() (in module florin.conncomp)

 	load() (in module florin.io)

 	load_hdf5() (in module florin.io)

 	
 	load_image() (in module florin.io)

 	load_images() (in module florin.io)

 	load_npy() (in module florin.io)

 	load_tiff() (in module florin.io)

M

 	
 	MPIPipeline (class in florin.pipelines)

 	
 	MultiprocessingPipeline (class in florin.pipelines)

 	MultithreadingPipeline (class in florin.pipelines)

N

 	
 	ndnt() (in module florin.ndnt)

R

 	
 	reconstruct() (in module florin.reconstruction)

 	regionprops() (in module florin.conncomp)

 	run() (florin.pipelines.BalsamPipeline method)

 	(florin.pipelines.MPIPipeline method)

 	(florin.pipelines.MultiprocessingPipeline method)

 	(florin.pipelines.MultithreadingPipeline method)

 	(florin.pipelines.SerialPipeline method)

 	(florin.pipelines.WorkQueuePipeline method)

S

 	
 	save() (in module florin.io)

 	save_hdf5() (in module florin.io)

 	save_image() (in module florin.io)

 	save_images() (in module florin.io)

 	
 	save_npy() (in module florin.io)

 	save_tiff() (in module florin.io)

 	SerialPipeline (class in florin.pipelines)

 	ShapeStepMismatchError

T

 	
 	tile() (in module florin.tiling)

 	
 	tile_generator() (in module florin.tiling)

W

 	
 	with_traceback() (florin.ndnt.InvalidThresholdError method)

 	(florin.tiling.DimensionMismatchError method)

 	(florin.tiling.InvalidTileShapeError method)

 	(florin.tiling.InvalidTileStepError method)

 	(florin.tiling.ShapeStepMismatchError method)

 	
 	WorkQueuePipeline (class in florin.pipelines)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 FLoRIN

